Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1544 : DIFFERENTIAL EQUATIONS

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

PART-A

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Define order and degree of a ordinary differential equation.
- 2. Solve $\frac{dy}{dx} = 4y$ and y(0) = 2.
- 3. Show that the differential equation $(y^2 \cos^2 x)\frac{dy}{dx} = y \sin 2x$ is exact.
- 4. Solve the differential equation $\frac{dy}{dx} = xy$.
- 5. Find the integrating factor of the differential equation $\frac{dy}{dx} + \frac{x}{1+v^2} = \frac{\tan^{-1} y}{1+v^2}$.
- 6. Write the general form of Euler Cauchy equation.

- 7. Find the complementary function of the differential equation $\frac{d^2y}{dx^2} + 4 = 8\cos x$.
- 8. Solve the second order differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 4x$ to find $\frac{dy}{dx}$.
- 9. Show that $y_1 = e^x$ and $y_2 = xe^x$ are Linearly independent functions.
- 10. Define Basis of solutions of a differential equation y''+P(x)y'+Q(x)y = 0.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. Each question carries 2 marks.

11. Solve the differential equation
$$\frac{dy}{dx} + 2xy = 4x$$
.

12. Solve
$$3e^x \tan y + (1 - e^x) \sec^2 y \frac{dy}{dx} = 0$$
.

13. Find the integral factor of the differential equation $\frac{dy}{dx} + y \tan x \approx \cos^3 x$.

- 14. Solve the differential equation xy'+y=0.
- 15. Find the solution of the initial value problem $y' = 3x^2e^{-y}$ and y(0) = 2.
- 16. Solve the differential equation $\frac{dy}{dx} = x + y + 1$.
- 17. Write a short note on a first-order linear and non-linear ordinary differential equations.
- 18. Write the general form of Bernoulli equation.
- 19. Solve the differential equation y''+y=0.
- 20. Solve y'' y = x.
- 21. Find the solution of the second order ODE, $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$.

22. Find a particular integral for $y'' - 3y' + 2y = e^x$.

23. Solve
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$$
.

- 24. Write a differential equation of the form y''+ay'+by = 0 for which the functions e^{7x} and e^{4x} form a basis.
- 25. Find a real general solution of $x^2y''-20y = 0$.
- 26. Solve the differential equation $(D^2 + 4D + 4)y = 0$.

(8 × 2 = 16 Marks)

PART ~ C

Answer any six questions. Each question carries 4 marks.

- 27. Solve $\cos(x + y)dx + (3y^2 + 2y + \cos(x + y))dy = 0$.
- 28. Solve the differential equation $\frac{dy}{dx} = -\frac{2}{y} \frac{3y}{2x}$.
- 29. Solve the differential equation (ax + hy + g)dx + (hx + by + f)dy = 0.
- 30. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$.
- 31. Solve the Bernoulli's equation $\frac{dy}{dx} + \frac{y}{x} = 2x^3y^4$.
- 32. Solve Differential equation $\frac{dy}{dx} + \frac{y}{x} = y^2 \log x$
- 33. Solve the second order ordinary differential equation $(D^2 + 4)y = \sin^2 x$.
- 34. Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \frac{2}{y^3} = 0$.
- 35. Solve the differential equation $4x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + (x^2 1)y = 0$.

36. Solve
$$x^3 \frac{d^2 y}{dx^2} - (x^3 + xy)\frac{dy}{dx} + (y^2 + xy) = 0$$
.

- 37. Solve the initial value problem $y''+y = 0.001x^2$; y(0) = 0, y'(0) = 1.5.
- 38. Using the method of variation of parameters find the particular integral of $y''+y = \sec x$.

 $(6 \times 4 = 24 \text{ Marks})$

PART -- D

Answer any two questions. Each question carries 15 marks.

39. (a) Solve the equation $(x^2 - 3y^2)dx + 2xydy = 0$.

(b) Solve the Bernoulli differential equation, $\frac{dy}{dx} + y = xy^3$.

- 40. (a) Solve the initial-value problem $(2x\cos y + 3x^2y)dx + (x^3 x^2\sin y y)dy 0;$ y(0) = 2.
 - (b) Solve the differential equation $\frac{dy}{dx} = \frac{2x-5y+3}{2x+4y-6}$.
- 41. Solve the initial-value problem $\left(y + \sqrt{x^2 + y^2}\right) dx x dy = 0$, y(1) = 0.
- 42. (a) Solve the initial-value problem y''-y'-12y = 0, y(0) = 3, y'(0) = 5.
 - (b) Solve the differential equation, $y^2 dx + (3x 1)dy = 0$.
- 43. (a) Use the variation-of-parameters method to solve $\frac{d^2y}{dx^2} + y = \csc x$ subject to the boundary conditions $y(x) = y(\pi/2) = 0$.
 - (b) Find the general solution of the differential equation $y''+4y = 8\cos 2x$.
- 44. (a) Solve the initial value $y''+3y'+2.25y = -10e^{-1.5x}$, y(0) = 1, y'(0) = 0.
 - (b) Find the solution of the Homogeneous Linear Equation $x^2y''+2xy'-20y = x^4$.

 $(2 \times 15 = 30 \text{ Marks})$

P – 2487

4

(Pages : 4)

Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1541 : REAL ANALYSIS I

(2018 Admission Onwards)

Time: 3 Hours

SECTION I

Answer all the questions.

- 1. Define absolute value function |x|.
- 2. Define least upper bound for a set $A \subseteq R$.
- 3. Find $\inf(A)$ if $A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$
- 4. Find $\lim_{n\to\infty} \left(\frac{3n+2}{2n-2}\right)$.
- 5. Define the limit of a real sequence.
- 6. Write the harmonic series. Is it convergent?
- 7. Define Cauchy sequence.

8. Let
$$\epsilon = \frac{1}{2}$$
 and $a = 3$, then find the ϵ - neighborhood, $V_{\epsilon}(a)$ of a .

- 9. Define closed set in **R**. Write an example for closed set.
- 10. Define perfect set in R.

(10 × 1 = 10 Marks)

P.T.O.

P - 2484

Max. Marks: 80

SECTION II

Answer any **eight** questions

- 11. Show that, two real numbers *a* and *b* are equal if and only if for every real number $\epsilon > 0$ it follows that $|a b| < \epsilon$.
- 12. Prove that $\sqrt{3}$ is irrational.
- 13. Using triangle inequality prove the inequality $||a| |b|| \le |a b|$.
- 14. Let $A \subseteq R$ be bounded above, and let $c \in R$. Define the set c+A by $c+A = \{c+a : a \in A\}$. Show that $\sup(c+A) = c + \sup A$.
- 15. Show that $\lim_{n \to \infty} \left(\frac{n+1}{n}\right) = 1$.
- 16. Show that every convergent sequence is bounded.
- 17. Let $\lim a_n = a$, and $\lim b_n = b$, then prove that $\lim (a_n + b_n) = a + b$.
- 18. Show that if $(b_n) \rightarrow b$, then the sequence of absolute values $|b_n|$ converges to |b|.
- 19. Write the examples for
 - (a) Sequences (x_n) and (y_n) , which both diverge, but whose sum $(x_n + y_n)$ converges;
 - (b) A convergent sequence (b_n) with $b_n \neq 0$ for all *n* such that $(1/b_n)$ diverges.
- 20. Prove that the sequence defined by $x_1 = 3$ and $x_{n+1} = \frac{1}{4 x_n}$ converges.
- Show that, sub sequences of a convergent sequence converge to the same limit as the original sequence.
- 22. Show that, every convergent sequence is a Cauchy sequence.
- 23. Let $a \in A$. Prove that a is an isolated point of A if and only if there exists an $\in -$ neighborhood $V_{\epsilon}(a)$ such that $V_{\epsilon}(a) \cap A = \{a\}$.
- 24. Show that if K is compact, then sup K and inf K both exist and are elements of K.
- 25. Prove that cantor set is a Compact set.

26. Let *E* is nowhere-dense in **R**, then show that the complement of \overline{E} is dense in **R**. (8 × 2 = 16 Marks)

SECTION III

Answer any six questions

- 27. Assume $s \in R$ is an upper bound for a set $A \subseteq R$. Then, show that $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < 0$.
- 28. State and prove Nested Interval Property.
- 29. Show that the set of rational numbers, Q is countable.
- 30. Given any set A, prove that there does not exist a function $f: A \rightarrow P(A)$ that is onto.
- 31. Assume $\lim a_n = a$ and $\lim b_n = b$, = b, then show that

(a) If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.

(b) If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.

- 32. Show that; if $x_n \le y_n \le z_n \forall n \in \mathbb{N}$, and if $\lim x_n = \lim z_n = I$, then $\lim y_n = I$.
- 33. If a sequence is monotone and bounded, then show that it is convergent.
- 34. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
- 35. Prove that, a point x is a limit point of a set A if and only if $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.
- 36. For any $A \subseteq \mathbb{R}$, Show that the closure \overline{A} is a closed set and is the smallest closed set containing A.
- 37. If $K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq ...$ is a nested sequence of nonempty compact sets, then show that, the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty.
- 38. Prove that the set of real numbers ℝ cannot be written as the countable union of nowhere-dense sets.

 $(6 \times 4 = 24 \text{ Marks})$

P-2484

E. Com

SECTION IV

Answer any **two** questions

39. Prove that

- (a) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying n > x.
- (b) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying $\frac{1}{n} < y$.
- (c) For every two real numbers a and b with a < b, \exists a rational number r, satisfying a < r < b.
- 40. (a) Show that, there exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.
 - (b) Find *suprema* and *infima* of the following sets.

(i)
$$\{n \in \mathbb{N} : n^2 < 10\}$$

(ii)
$$\{\frac{n}{m}: m, n \in \mathbb{N} \text{ with } m+n \leq 10\}$$

- 41. (a) State and prove Bolzano-Weierstrass theorem.
 - (b) Prove or disprove: Every Bounded sequence of real number are convergent.
- 42. Show that
 - (a) Cauchy sequences are bounded.
 - (b) A sequence converges if and only if it is a Cauchy sequence.
- 43. (a) State and prove Cauchy Criterion for Series.
 - (b) Using Alternating Series Test, test the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2n}$.
- 44. (a) Show that
 - (i) The union of an arbitrary collection of open sets is open.
 - (ii) The intersection of a finite collection of open sets is open.

4

(b) Let
$$B = \left\{ \frac{(-1)^n n}{n+1}, n \in \mathbb{N} \right\}$$

- (i) Find the limit points of *B*.
- (ii) Does B contain any isolated points?
- (iii) Find closure of B, \overline{B} .

 $(2 \times 15 = 30 \text{ Marks})$

Name :

Fifth Semester B.Sc. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1543 : ABSTRACT ALGEBRA - GROUP THEORY

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

SECTION I

Answer all the questions.

- 1. Define Reflexive and transitive properties of a relation R on a set.
- 2. Let \mathbb{N} represent the set of natural numbers and + represent usual addition, verify whether the structure (\mathbb{N} , +) form a group or not?
- 3. Show that the identity element in a group is unique.
- 4. Find inverse of 13 in $(\mathbf{Z}_{20}, +_{20})$.
- 5. Write the permutation (1235) (413) as a product of disjoint cycles.
- 6. Find the order of the following permutation (1 4).
- 7. Define Group Isomorphism.
- Consider the group Z₄, under addition modulo 4. Let H = {0, 2} be a subgroup. Then find all left cossets of H.
- 9. Define Normal subgroup.
- 10. Define Kernel of a group Homomorphism.

 $(10 \times 1 = 10 \text{ Marks})$

P.T.O.

SECTION II

Answer any eight questions.

- 11. Verify whether the set of integers form a group under usual multiplication or not?
- 12. Write an example for non-abelian group.
- 13. Define center of a group with example.
- 14. Prove that in any group, an element and its inverse have the same order.
- 15. If a and b are group elements and $ab \neq ba$ prove that $aba \neq e$.
- 16. Find all generators of Z_6 and Z_8 .

17. Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}$ = Find $\beta \alpha$ and $\alpha \beta$.

- 18. Find an isomorphism from the group of integers under addition to the group of even integers under addition.
- 19. Prove that S_4 is not isomorphic to D_{12} .
- 20. Let G be the real numbers under addition and let \overline{G} be the positive real numbers under multiplication. Then show that $G \approx \overline{G}$.
- 21. Suppose that ϕ is an isomorphism from a group G onto a group \overline{G} . Then show that ϕ^{-1} is an isomorphism from $\overline{G} \to G$.
- 22. Prove that the set of automorphisms of a group and the set of inner automorphisms of a group are both groups under the operation of function composition.
- 23. Show that, for each element a in a group G, there is a unique element b in G such that ab = ba = e.
- 24. Let $a, b \in G$, where G is a group, then show that $(ab)^{-1} = b^{-1}a^{-1}$.
- 25. Let G be a group and H a nonempty subset of G. If $ab^{-1} \in H$ whenever a and b are in H, then Show that H is a subgroup of G.
- 26. Show that, the *center* of a group *G* is a subgroup of *G*.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION III

Answer any six questions.

- 27. Show that the set of n-tuples over \mathbb{R} , $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n): x_1, x_2, \dots, x_n \in \mathbb{R}\}$ form an abelian group under component wise addition.
- 28. Let *H* be a nonempty finite subset of a group *G*. If *H* is closed under the operation of *G*, then show that *H* is a subgroup of *G*.
- 29. State and prove fundamental theorem of cyclic groups.
- 30. Show that every group is isomorphic to a group of permutations.
- 31. Let *H* be a subgroup of *G*, and let *a* and *b* belong to *G*. Then prove that aH = Ha if and only if $H = aHa^{-1}$.
- 32. Show that, a group of prime order is cyclic.
- 33. Prove that a group of order 12 must have an element of order 2.
- 34. Prove that a subgroup H of G is normal in G if and only if $xHx^{-1} = H, \forall x \text{ in }G$.
- 35. Let *G* be a group and let *H* be a normal subgroup of *G*, then show that the set $G_H = \{aH | a[G]\}$ is a group under the operation (aH)(bH) = abH.
- 36. Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, then show that G is Abelian.
- 37. Suppose that $\phi: Z_{50} \to Z_{15}$ is a group homomorphism with $\phi(7) = 6$. Find $\phi(x)$.
- 38. Find all Abelian groups (up to isomorphism) of order 360.

$$(6 \times 4 = 24 \text{ Marks})$$

SECTION IV

Answer any two questions.

39. (i) Define

- (a) a Group,
- (b) Abelian group
- (c) Cyclic group
- (ii) Let G is the set of all 2×2 matrices whose determinant is non zero. Prove that G form a group under matrix multiplication. Is this group Abelian? Justify?
- (iii) Let G is the set of all 2×2 matrices. Is G a group under matrix multiplication?
- 40. (i) Let G be a group, and let $a \in G$. Then, show that $\langle a \rangle$ is a subgroup of G.
 - (ii) Define the Centralizer of an element in a group G.
 - (iii) Show that for each a in a group G, the centralizer of a is a subgroup of G.
- 41. Let $G = \{(1), (132), (465), (78), (132), (465), (123), (456), (123), (456), (78), (78)\}$

Then find (i) Orbit of 1, 2, 4 & 7

- (ii) Stabilizer of 1, 2, 4 & 7
- 42. (i) State and prove first Isomorphism theorem.
 - (ii) If ϕ is a homomorphism from a finite group G to \overline{G} , then $|\phi(G)|$ divides $|G| \& |\overline{G}|$.
- 43. (i) Prove that, every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
 - (ii) If the pair of cycles $\alpha = (a_1, a_2, ..., a_m)$ and $\beta = (b_1, b_2, ..., b_n)$ have no entries in common, then show that $\alpha\beta = \beta\alpha$.
- 44. (i) Let $z = \{\dots, \dots, -2, -1, 0, 1, 2, \dots\}$ and $4z = \{\dots, \dots, -8, -4, 0, 4, 8, \dots\}$ then construct the factor group z/4z
 - Let G be a finite Abelian group and let p be a prime that divides the order of G. Then prove that G has an element of order p.

 $(2 \times 15 = 30 \text{ Marks})$

P - 2486

4

Reg. N	о.	:	••••	••••	•••	•••	•••	 •••	•••	••	•••	
Name	:							 				

Fifth Semester B.A./B.Sc./B.Com. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics

Open Course

MM 1551.3 : BASIC MATHEMATICS

(2018 Admission Onwards)

Time : 3 Hours

PART-A

Answer all questions. Each question carries 1 mark.

- 1. Define improper fractions.
- 2. Simplify $10 (1-3)^2 2^3$.
- 3. State the divisibility rule for dividing by 3.
- 4. Determine the place value of 3 in 547.398.
- 5. Convert $3\frac{3}{21}$, into an improper fraction.
- 6. Write 123.45 as a fraction.

Max. Marks : 80

7. Find
$$\frac{2}{9} + \frac{7}{5}$$
.

8. Find the mean of the first 10 even numbers.

9. Define mode.

10. Define an obtuse triangle.

 $(10 \times 1 = 10 \text{ Marks})$

PART – B

Answer any eight questions. Each question carries 2 marks.

11. Find $\frac{3}{7} \times \frac{9}{2} - \frac{4}{5}$.

- 12. Convert $22\frac{32}{25}$ into an improper fraction...
- 13. Convert $\frac{73}{25}$ into a mixed number.
- 14. Find the median of the first 10 prime numbers.
- 15. Simplify $17 + 3(7 \sqrt{9})^2$.
- 16. Find the prime factorisation of 320.
- 17. Find the LCM of 17 and 19.
- 18. Write two equivalent fractions of 2/7.
- 19. Find the decimal equivalent of 34/99.

20. Find $2\frac{4}{5} \div 3\frac{2}{7}$.

21. Convert the fraction 3/7 to decimal form and then to percent form.

22. Solve $x^2 - 7x + 12 = 0$.

23. Define logarithm of a number.

- 24. Evaluate $\sqrt{125} \times \sqrt{20}$.
- 25. Find the determinant of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

26. Find the adjoint of the matrix $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$.

$(8 \times 2 = 16 \text{ Marks})$

Answer any six questions. Each question carries 4 marks.

- 27. Simplify $\sqrt[3]{\frac{32}{9} \div \frac{3}{2}} \times \frac{3}{4} + \sqrt{\sqrt{\frac{128}{27} \div \frac{3}{2}}} + 1 \times \frac{3}{5}$.
- 28. Describe histograms with an example.
- 29. Find the weighted arithmetic mean of the first 10 even numbers with the first ten odd numbers as the weights.
- 30. Find the LCM and GCD of 36 and 60.
- 31. State the three laws of exponents.
- 32. State the three laws of logarithms.
- 33. Find the inverse of the matrix $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$.
- 34. What percent of 320 is 20? Express as a decimal after rounding.
- 35. Solve the quadratic equation $2x^2 7x + 5 = 0$.

P – 2490

- 36. Solve the simultaneous equations 2x + 3y = 12 and 3x + 2y = 13.
- 37. Calculate the total simple interest on a loan of Rs. 10,000 at 5% annual interest after 5 years and 6 months. Also find the total amount to be paid.
- Construct a histogram for the frequency of prime numbers up to 25, with classes of size 5: The classes are 1-5, 6-10,...,21-25, while the respective frequencies are the number of primes among 1-5, number of primes among 6-10,..., number of primes among 21-25.

 $(6 \times 4 = 24 \text{ Marks})$

PART – D

Answer any two questions. Each question carries 15 marks.

- 39. Define mean, median, mode and weighted mean of a data set, illustrating each with an example. Calculate all of them for the first 10 prime numbers. For calculating the weighted mean, take the whole numbers 1 to 10 as the weights.
- 40. A bank offers loans under schemes. One, at a compound interest rate of 10% annually; Another, at a simple interest of 15% annually. Which of the two schemes is beneficial if you need to take a loan of Rs. 1,00,000 for 3 years? Does the answer change depending on the loan amount or the loan period?
- 41. Solve the system of equations by finding the inverse of the matrix:

$$x + 2y + 3z = 6$$

$$2x + 3y + z = 6$$

$$3x + y + 2z = 6$$

42. Solve the system of equations by Cramer's Rule:

$$x + y + z = 3$$

 $x + 2y + 3z = 6$
 $2x + y + 4z = 7$

- 43. Describe the method to solve a general quadratic equation, stating the role of its discriminant. Solve the quadratic equation $5x^2 + 10x 15 = 0$.
- 44. Describe a Geometric Progression with example. Derive the expression for the sum of its first *n* terms.

$$(2 \times 15 = 30 \text{ Marks})$$

P - 2490

Reg. No. :

Name :

Fifth Semester B.Sc. Degree Examination, December 2022

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1542 : COMPLEX ANALYSIS I

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks : 80

PART – A

Answer all the questions.

- 1. Write $\frac{8i-1}{i}$ in the form of a + ib.
- 2. Find $(i)^{62}$.
- 3. Which of the points -i, 2i, 1-2i, -3 is farthest from origin?
- 4. Write Euler's formula.
- 5. Give an example of a bounded set and unbounded set.
- 6. Describe the range of f(z) = z + 5, $\operatorname{Re}(z) > 0$.
- 7. Define analytic function and give an example.
- 8. State the fundamental theorem of Algebra.
- 9. Write $z^4 16$ in factored form.
- 10. Find $\int_{C} (3z^2 5z + i) dz$ along the line segment from z = i to 1.

(10 × 1 = 10 Marks)

PART - B

Answer any eight questions.

- 11. Find the quotient $\frac{(6+2i)-(1+3i)}{(-1+i)-2}$.
- 12. Show that $\operatorname{Re}(iz) = -\operatorname{Im}(z)$ for any complex number z.
- 13. Express $1 + \sqrt{3}i$ in polar form and hence find $\arg(1 + \sqrt{3}i)$.
- 14. State and prove De Moivre's formula.
- 15. Find the limit of the sequence (z_n) where $z_n = \frac{2+in}{1+3n}$.
- 16. Find $\lim_{z \to 2i} = z^2 2z + 1$.
- 17 Using C R equations, show that $f(z) = x^2 + y + i(y^2 x)$ is not analytic at any point.
- 18. If f(z) is an analytic function and f'(z)=0 everywhere in the domain then prove that f(z) is a constant in the domain.
- 19. Prove that $\sin z = 0$ if and only if $z = k\pi$.
- 20. Find dw/dz if $w = \exp[\sin 2z]$.
- 21. Prove the identity $\cosh^2 z \sinh^2 z = 1$.
- 22. Find all values of $(-2)^{i}$.
- 23. Find the principal value of $(i)^{2i}$.
- 24. Show that $\int_{0}^{\pi} e^{t} dt = 2i$.
- 25. Find an upper bound for $\left| \int_{C} \frac{e^{z}}{z^{2}+1} dz \right|$ Where C is the circle |z| = 2.
- 26. Evaluate $\int_{c}^{1} \frac{1}{z} dz$ where C is the half circle in the counter clockwise direction joining *i* and *i*.

(8 × 2 = 16 Marks) P - 2485

PART - C

Answer any six questions.

27. Describe the set of points *z* satisfying
$$|z+2| = |z-1|$$
.

28. Write the quotient $\frac{1+i}{\sqrt{3}-i}$ in polar form.

- 29. Find all cube roots of $\sqrt{2} + i\sqrt{2}$.
- 30. If $\lim_{z \to z_0} f(z) = A$, $\lim_{z \to z_0} g(z) = B$, then show that $\lim_{x \to z_0} f(z)g(z) = AB$.
- 31. Express $f(z) = \frac{x-1-iy}{(x-1)^2 + y^2}$ in terms of z and \overline{z} .
- 32. Check the differentiability of $f(z) = \overline{z}$.
- 33. Prove that e^z is entire and find its derivative.
- 34. If f(z) = u(x,y) + i v(x,y) is analytic in a domain D then prove that u(x,y) and v(x,y) are harmonic in D.
- 35. Find poles and their multiplicities for $f(z) = \frac{(3z+3i)(z^2-4)}{(z-2)(z^2+1)^2}$
- 36. Find $\lim_{z \to 0} \frac{\sin z}{z}$.
- 37. Show that $\sin^{-1}(z)$ is a multiple valued function and $\sin^{-1}(z) = -i \log \left[iz + (1 z^2)^{1/2} \right].$
- State deformation invariance theorem. Using this prove Cauchy's integral theorem.

$$(6 \times 4 = 24 \text{ Marks})$$

P -- 2485

PART – D

Answer any two questions.

- 39. (a) Compute $(1+i)^{24}$ (b) Find $\int_{0}^{2\pi} \cos^4 \theta \, d\theta$.
 - (c) Compute the derivative of $\left(\frac{z^2-1}{z^2+1}\right)^{100}$.
- 40. State and prove the necessary condition for a function to be differentiable at a point z_0 .
- 41. (a) Construct an analytic function whose real part is $u(x, y) = x^3 3xy^2 + y$.
 - (b) Verify that $u(x, y) = e^x \sin y$ is harmonic in its region of definition.
- 42. (a) If $z \neq 0$, define $\log z$. Find $\log(1+i)$, $\log(-i)$.
 - (b) Determine the domain of analyticity for $f(z) = \log(3z i)$. Compute f'(z).
- 43. (a) Evaluate $\int_{Cr} (z z_0)^n dz$ where Cr is the circle $|z z_0| = r$.
 - (b) Let *f* be a continuous function in the domain D. If *f* has an antiderivative in D, prove that every loop integral of *f* in D vanishes.
- 44. (a) Evaluate $\oint_{|z|=2} \frac{e^z}{z^2 9} dz$.
 - (b) Determine the possible values of $\int_{\Gamma} \frac{1}{z-a} dz$ where Γ is any positively oriented simple closed contour not passing through *a*.

 $(2 \times 15 = 30 \text{ Marks})$